返回
数学
证明三点共线的方法有哪些
64查看  1回答
悬赏40积分
  • 赫顿百知
    已解决
    2024-01-16 20:43
    证明三点共线的方法有哪些希望能解答下问题补充:
    证明三点共线的方法有哪些希望能解答下
    解决时间 2025-12-25 11:54
  • 0点赞
    0反对
    0举报
    0收藏
    0分享
    海报
    分享到:
  • 最佳答案
  • 2024-01-16 20:43
  • 共线向量也就是平行向量,方向相同或相反的非零向量叫平行向量,表示为a∥b ,任意一组平行向量都可移到同一直线上,所以称为共线向量。

    方法一:取两点确立一条直线,计算该直线的解析式 .代入第三点坐标 看是否满足该解析式 (直线与方程)。方法二:设三点为A、B、C .利用向量证明:λAB=AC(其中λ为非零实数)。方法三:利用点差法求出AB斜率和AC斜率,相等即三点共线。方法四:用梅涅劳斯定理。方法五:利用几何中的公理“如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线”.可知:如果三点同属于两个相交的平面则三点共线。方法六:运用公(定)理 “过直线外一点有且只有一条直线与已知直线平行(垂直)”.其实就是同一法。方法七:证明其夹角为180°。方法八:设A B C ,证明△ABC面积为0。证明三点共线的其他方法:利用点差法求出AB斜率和AC斜率相等即三点共线,证三次两点一线,梅涅劳斯定理,利用几何中的公理,如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线可知,如果三点同属于两个相交的平面则三点共线。运用公(定)理 “过直线外一点有且只有一条直线与已知直线平行(垂直)”,其实就是同一法;证明其夹角为180° ;设ABC,证明△ABC面积为0。

同类教育问答