返回
数学
i+i的平方+i的立方+…+i的2025次幂等于几
145查看  3回答
悬赏60积分
  • 已解决
    2024-11-13 15:21
    i+i的平方+i的立方+…+i的2025次幂等于几,在线求解答问题补充:
    i+i的平方+i的立方+…+i的2025次幂等于几,在线求解答
    解决时间 2026-01-04 16:16
  • 0点赞
    0反对
    0举报
    0收藏
    0分享
    海报
    分享到:
  • 最佳答案
  • 2024-11-13 15:21
  • i+i的平方+i的立方+…+i的2020次幂等于0。

    1. 这是一个等比数列,公比为i,首项为i,共有2020项。那么根据等比数列求和公式:(1-i^(2021))/(1-i), 结果等于0

    2. 因为i的4次幂及以上次幂都可以通过i的前面的三次幂推导出来,所以最终结果为0。

  • 全部回答
  • 1楼
    2026-01-04 16:16

    因为i+i^2+ i^3+i^4=i-1-i+1=0;

    2020/4=505,所以原式的值=0*505=0.

  • 2楼
    2024-11-13 15:21

    当进行奇数次幂时,$i×i=-1$,偶数次幂时,$i×i=1$。因此,对于任意偶数$k$,$i^k=1$,对于任意奇数$n$,$i^n=-1$。$i+i^2+i^3+...+i^{2020} = i-1+i-1+...+i-1$(共1010项)。因此,$i+i^2+i^3+...+i^{2020} = 1010i-1010 = 1010(i-1)$.

  • 同类教育问答