公式:第n项=首项+(项数-1)*公差项数=(末项-首项)/公差+1公差=(末项-首项)/(项数-1)拓展资料等差数列是常见数列的一种,如果一个数列从第二项起,每一项与它的前一项的差等于同一个常数,这个数列就叫做等差数列,而这个常数叫做等差数列的公差,公差常用字母d表示。
通项公式为:an=a1+(n-1)*d。首项a1=1,公差d=2。通项公式推导:a2-a1=d;a3-a2=d;a4-a3=d……an-a(n-1)=d,将上述式子左右分别相加,得出an-a1=(n-1)*d→an=a1+(n-1)*d。前n项和公式为:Sn=a1*n+[n*(n-1)*d]/2Sn=[n*(a1+an)]/2Sn=d/2*n2+(a1-d/2)*n注:以上n均属于正整数。
公差是指一组数据中各个数据与其平均数之差的绝对值的平均数,用来衡量数据的离散程度。公差的计算公式如下:
公差=(各个数据与平均数之差的绝对值之和)÷(数据的个数)
其中,各个数据与平均数之差的绝对值可以表示为|X - A|,其中X表示数据,A表示平均数。