返回
数学
高中数学证明一个函数是增函数
92查看  1回答
悬赏70积分
  • 萌娃教育
    已解决
    2024-01-19 12:50
    高中数学证明一个函数是增函数,在线求解答问题补充:
    高中数学证明一个函数是增函数,在线求解答
    解决时间 2026-01-12 18:50
  • 0点赞
    0反对
    0举报
    0收藏
    0分享
    海报
    分享到:
  • 最佳答案
  • 2024-01-19 12:50
  • 按照增函数的定义来证明嘛!令x1<x2∈(-1,1)则,f(x1)-f(x2)=[x1/(x1²-1)]-[x2/(x2²-1)]=[x1*(x2²-1)-x2*(x1²-1)]/[(x1²-1)(x2²-1)]=(x1x2²-x1-x2x1²+x2)/[(x1²-1)(x2²-1)]=[x1x2(x2-x1)+(x2-x1)]/[(x1²-1)(x2²-1)]=[(x1x2+1)(x2-x1)]/[(x1²-1)(x2²-1)]已知x1<x2∈(-1,1)则,x1x2∈(-1,1),那么:x1x2+1∈(0;

    2)>0x2-x1>0(x1²-1)<0,(x2²-1)<0所以,f(x1)-f(x2)=[(+)*(+)]/[(-)*(-)]>0即,f(x1)>f(x2)所以,f(x)在(-1,1)上是减函数!

同类教育问答