返回
数学
特征向量方程怎么解
55查看  2回答
悬赏70积分
  • 小笨熊说故事
    已解决
    2024-01-16 13:03
    特征向量方程怎么解,在线求解答问题补充:
    特征向量方程怎么解,在线求解答
    解决时间 2026-01-05 16:07
  • 0点赞
    0反对
    0举报
    0收藏
    0分享
    海报
    分享到:
  • 最佳答案
  • 2024-01-16 13:03
  • 特征向量方程是线性代数中的重要概念,用于描述一个线性变换在某个向量上的表现。

    要解特征向量方程,可以按照以下步骤进行:首先,确定矩阵A和常数λ,这是特征向量方程 A\\mathbf{x} = \\lambda\\mathbf{x}Ax=λx 中的两个主要元素。接下来,将方程 A\\mathbf{x} = \\lambda\\mathbf{x}Ax=λx 改写为 (A - \\lambda I)\\mathbf{x} = \\mathbf{0}(A−λI)x=0,其中I是单位矩阵。这一步通过将方程的两边同时减去λ倍的单位矩阵来实现。然后,求解线性方程组 (A - \\lambda I)\\mathbf{x} = \\mathbf{0}(A−λI)x=0。这个方程组中的未知数是特征向量x。最后,求解特征多项式 f(\\lambda) = |A - \\lambda I|f(λ)=∣A−λI∣,找到所有的特征值λ。根据特征值和特征向量方程,可以找到矩阵A的所有特征向量。在解特征向量方程时,需要注意以下几点:特征向量x应该是非零向量,因为如果x为零向量,则它不能是特征向量。特征值λ应该是矩阵A的特征多项式 f(\\lambda)f(λ) 的根,即 f(\\lambda) = 0f(λ)=0。如果矩阵A是方阵(行数和列数相等),则特征向量x应该是线性独立的,即它们不能是零向量,并且应该构成矩阵A的一组基底。通过以上步骤和注意事项,可以求解特征向量方程并找到矩阵A的所有特征向量。

  • 全部回答
  • 1楼
    2024-01-16 13:03

    λ = 2 对应两个线性无关的特征向量。从 x1 -2x3 = 0 一个方程三个未知数就可知道,有两个变量是自由的。你只取了一组。应该再取一组 x2 = 1 , x3 = 0 ,解出 x1 = 0 。

  • 同类教育问答